Every animal on earth sleeps or displays quiescent behaviors that resemble sleep. Humans spend greater than a third of their lives asleep but, amazingly, fundamental questions about sleep remain unanswered including: What is its function? And; How is it regulated at a molecular and genetic level? In fact, sleep remains one of nature’s greatest biological mysteries.
Simple animals such as fruit flies and nematodes have become key tools in the sleep biology field. These animals are called “model organisms” because many of the same genes and molecules that drive their biology also controls ours. The nematode Caenorhabditis elegans is a microscopic, free-living worm that has been widely used in the lab as a model for understanding development and behavior. C.elegans displays sleep behaviors at regularly timed intervals during larval development and in response to stressful environmental stimuli. But, why study sleep in a microscopic worm? First, C.elegans is a powerful genetic system that we can manipulate with ease. They are transparent and grow from an embryo to an adult in 4 days, thus allowing for fast genetic alteration and experimentation. Because of their simplicity, we know the location of every one of their cells and the connection of every neuron in its simple nervous system (Only 302 neurons!). My lab takes advantage of this amazing animal in hopes to further our understanding of sleep. Specifically, my research focuses on the following: 1) Identification of sleep regulating neurons and how they communicate as neural circuits to control sleep behavior and; 2) Characterize the mechanisms of how signaling molecules called neuropeptides regulate sleep. We use a combination of techniques common in the following disciplines: genetics, molecular biology, neurobiology and behavior.